Supporting Information

Relating 3D Geometry and Photoelectrochemical Activity of WO₃loaded n-Si Nanowires: Design Rules for Photoelectrodes

Yihui Zhao^a, Shashank Balasubramanyam^b, Ageeth. A. Bol^b, Anja Bieberle-Hütter^a*

^a Electrochemical Materials and Interfaces (EMI), Dutch Institute for Fundamental Energy Research (DIFFER), 5600 HH Eindhoven, The Netherlands

^b Plasma and Materials Processing (PMP), Department of Applied Physics, Eindhoven University of Technology (TU/e), 5600 MB Eindhoven, The Netherlands

* Corresponding author, E-mail: <u>a.bieberle@differ.nl</u>, Postal address: PO Box 6336, NL-5600 HH Eindhoven, the Netherlands

SEM of Si nanowire arrays with different chemical etching time and coated by ALD with WO₃ with different thickness

Figure S1: (a) Scanning electron microscope (SEM) images of Si nanowires fabricated with different etching time: 20 min, 30 min, 40 m in and 50 min. (b) Si nanowire length as function of etching time.

Figure S2: SEM images of WO₃/Si nanowires fabricated with different Si etching time: 20 min, 30 min, 40 min and 50 min, and coated WO₃ films with different thickness: 10 nm, 30 nm, 50 nm.

GIXRD of WO₃/Si Nanowires Array

The crystalline phase of the WO₃ film was characterized by a Bruker D8 Eco X-ray diffractometer (XRD) with a Cu K α (λ = 1.5406 Å) source and a Lynx-eye detector in a grazing incidence configuration at an incident angle of 3° and in the 2 θ range from 20° to 60°. Figure S3 shows the GIXRD spectra of the WO₃/Si nanowires array electrode after annealing in Ar at 450°C for 1 h. The diffraction peaks agree well with monoclinic WO₃ corresponding to JCPDS No. 83-0950 indicating that monoclinic WO₃ was obtained after annealing.

Figure S3: GIXRD spectra of Si nanowires (50 min etching) coated WO_3 (50 nm) after annealing in Ar.(monoclinic WO_3 corresponding to JCPDS No. 83-0950)

Light Reflectance

The light reflectance of WO₃/Si nanowires arrays electrodes were investigated using a Perkin Elmer 1050 UV/Vis/NIR Spectrophotometer in the wavelength range of 300 nm to 850 nm with a step of 5 nm. Figure S4 shows the reflectance spectra of the WO₃/Si nanowires arrays with different Si etching time and different WO₃ thickness. As shown in Figure S4a, comparing with the planar electrode, the nanowires array structures decrease light reflectance. For 20 min Si etching with different WO₃ thickness, the light reflectance increases with the reduced WO₃ film thickness (Figure S4b).

Figure S4: UV-Vis reflectance spectra of (a) WO_3 /Si nanowires with different Si etching time (a) and (b) WO_3 /Si nanowires with different WO_3 film thickness.